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About Newton's law of gravity 

 
By H. Seeliger 

 
Probably nobody will doubt that Newton's law of 

gravity is the most perfect summary of all experiential 

facts about the movements within our planetary system. 

There is account and explanation of all motion processes 

in detail and also the few anomalies not yet explained do 

not necessarily indicate an imperfection of the law. If we 

have to consider the validity of Newton's law within our 

planetary system as one of the most reliable results of 

theoretical astronomy, we must not ignore the fact that up 

to now there are no observational facts that can guarantee 

or prove its universal validity. It will be a permissible 

conclusion by analogy if we assume that the law of 

attraction is independent of the position of the attracting 

masses in space, i.e. that it rules within the multiple star 

systems, the star clusters as well as in planetary systems. 

We will not doubt the validity of this assumption even if 

we have recognized that the observed double star motions 

are not very suitable to decide this question in a safe 

way.1 But things are quite different if we ask ourselves 

the question whether Newton's law also accurately 

reflects the attraction of masses separated by 

immeasurable distances. Experience has shown that there 

is no direct point of reference here and, on the other hand, 

Newton's law is a purely empirical formula whose 

absolute accuracy we know nothing about. Therefore, the 

question is allowed whether we may extend Newton's law 

to immeasurably large spaces, or whether this procedure 

may lead to contradictions or difficulties. The following 

lines contain considerations to this effect. 

For the sake of simplicity - because it is easy to see 

that this assumption does not overturn the following 

considerations - let us think of all bodies filling the 

universe as spheres whose density is arranged in 

concentric layers. The attraction of any world body to any 

point outside it is not changed if its mass is pulled apart 

into a concentric sphere of any size and only one 

concentrically arranged but otherwise arbitrary density of 

mass is maintained. It is necessary that the attracted point 

lies outside the larger sphere and that the total mass 

remains unchanged. If the large sphere has a finite 

diameter, however large, its mass density can be 

considered finite at all points. If the above process is 

carried out in a suitable manner for all the bodies of the 

universe, the attraction experienced by any point A will 

be equal to the attraction of a space filled everywhere 

with mass of finite density δ. The same space will 

surround all the bodies under consideration on the outside 

and on the inside to point A on all sides. The inner cavity 

contains no mass. Now the potential of this mass 

 
1 Compare this to my second pickup at ζ Cancri, S. 

distribution on A is to be calculated. In the immediate 

vicinity of A lies the coordinate beginning O. It is also ρ 

and r the distance of a mass element dm from A and O, γ 

the angle AOdm and φ the angle which the plane AOdm 

forms with a fixed plane passing through AO. If the 

attraction constant is then set to 1, then 
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R0 and R1 are the values of r, which define the inner and 

outer boundary of the space filled with mass. If we still 

set AO=a and develop because 
𝑎

𝑟
 is a small fraction under 

all circumstances, according to the potencies of that 

fraction, then 
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Where Pn is the famous Laplace-Legendre's spherical 

function. Herewith 
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And for a=0, the result is 
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∂V

∂a
= X is the acceleration which the attracted point 

experiences in direction a If one imagines a small 

extended mass to be exposed to the attraction, then 
∂2V

∂a2
Δa 

the acceleration with which 2 points in the very small 

mutual distance Δa seem to move away from each other 

in this direction. It can be said that the mass experiences 

a strain = Z in the direction a. 
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R0 is always a finite quantity. If now the effect of a 

finite part of space is considered, then R1 is also a finite 

quantity. The same applies to V, X and Z, and the 

conditions that X or Z become zero, for example, can 

easily be read from the equations. For the whole universe, 

R1 will be infinitely large at first - if we do not want to 

take refuge in too few appropriate ideas. If δ is a finite 

size for infinitely large areas, then X and Z will generally 

be completely indeterminate, as long as no specific 

prerequisite is made about the way from finite values R1 

to the infinitely large ones. So, both quantities can just as 

well become infinite as remain finite. In other words, X 

and Z become completely undetermined and can become 

infinite if the mass density δ is finite within infinitely 

large parts of space. You can specify an infinite number 

of mass distributions, in which the acceleration X, i.e. 

also the velocity and also the strain, becomes infinitely 

large within finite or infinitely large distances. At the 

same time, consideration of the expressions (1) shows 

that under the given assumptions infinitely distant parts 

of space determine the motion and, as a result of the 

strain, also the nature of matter at a certain point. But 

since the mass distribution of infinitely distant parts of 

space is unfathomable for us, the mechanical states of 

matter in every point would also be unfathomable.  

In order to clearly overlook these conditions, it is 

recommended to look at simple examples. Let's assume 

in a naturally completely arbitrary way first of all that the 

space is continuously filled with mass of the 

homogeneous density δ and further that we have to 

imagine the space as a sphere with an infinitely large 

radius. In mechanical terms, this would not eliminate the 

uncertainty of the situation, we also need to be able to 

specify the distance r of the attracted point from the 

center of the sphere. Then the point is accelerated 

towards the center of the sphere, which is proportional to 

rδ. So, this acceleration has all values from zero to 

infinity in space. The distortion, on the other hand, 

remains finite everywhere and is proportional to δ. 

Secondly, we imagine a cone of any arbitrary, but very 

small opening ω. The same is filled with mass of the 

density δ, where δ may be only a function of the distance 

r from the tip O of the cone. If we call a the distance of 

the attracted point from O and γ the angle that this 

direction makes with the cone axis, the components of 

attraction in the direction of the axis (X) and 

perpendicular to it (Y) will be represented by the 

reduction of a and ω with any approximation by the 

formulas 
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where R0 and R1 are the boundaries of the truncated cone 

filled with mass. So here the attraction becomes infinite 

when it is R1; but also the strain: 
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in the direction of the axe becomes unlimited. If we think 

about the second part of the double cone, too, which is 

occupied by mass in exactly the same way, then for a = 0, 

X, for example, is at first quite indefinite, since it assumes 

the form ∞ - ∞ and we can give this expression any value 

we like by letting the extension of one cone into infinity 

depend on that of the other in a suitable way. Assuming 

that both cones are always the same size, the component 

X = 0, the attracted point is then in a kind of infinitely 

unstable equilibrium. But the distortion becomes twice as 

large as in the earlier case, i.e. for R1 = ∞ also infinitely 

large and the matter could not exist at all near the cone 

tip.  

From such simple and obvious examples, it is clear 

in any case that quite possible and imaginable 

assumptions lead to quite impossible or unthinkable 

consequences. However, one can hardly consider such 

occurrences to be admissible in the case of a generally 

valid law and must therefore conclude that Newton's law, 

applied to the immeasurably extended universe, leads to 

insurmountable difficulties and insoluble contradictions 

if one considers the matter scattered in the universe to be 

infinitely large.  

It will therefore be necessary to make a choice 

between the two assumptions: ı) the total mass of the 

universe is immeasurably large, then Newton's law 

cannot be regarded as a mathematically strict expression 

for the prevailing gravitational forces, 2) Newton's law is 

absolutely accurate, then the total matter of the universe 

must be finite, or more precisely, infinitely large parts of 

space must not be filled with mass of finite density. As is 

well known, the question of whether the total matter is 

finite or infinitely large is answered in various ways, and 

I will certainly not claim to be able to reach a decision on 

this much-discussed question if I express my view that an 

absolutely empty space or a space filled with infinitely 

thin matter is not conceivable at all. However, the present 

question can also be viewed from a different angle. One 

may look at it as one likes, but it will always be difficult 

to make an evaluation of the basic mechanics of heaven 

dependent on its answer, and from the scientific point of 

view, the view that is completely independent of meta-

physical speculations will undoubtedly be considered 

more appropriate and therefore more correct.  

Now Newton's law is still a purely empirical 

formula, the accuracy of which would be a new and 

unsupported hypothesis if it were assumed to be absolute. 

Therefore, I do not think that it is doubtful that we are 

acting correctly if we do not recognize the absolute 

precision of Newton's law, but rather if we assume that 

we should receive such supplementary elements that the 

difficulties discussed will disappear of their own accord, 

while on the other hand, of course, the 'facts' observed in 

our planetary system will be satisfied. Of course, the 

necessary supplementary elements are not determined by 

these points of view and there are an infinite number of 

permissible assumptions. More to mention an example 

than to show a result of deeper insights, a suitable 

assumption shall be mentioned. The view that gravity is 

a suddenly affecting remote force, at the moment can no 

longer be maintained. However, if one assumes a 

medium that mediates the attraction, one will have to 

admit the possibility of the necessity of a correction 



coming from this source. This correction is still 

completely unknown for the time being. But it will not be 

considered absurd to consider, without prejudice to the 

expansion of our knowledge, one of the many existing 

analogies of attraction with other agents, namely with the 

light, all alone, for example, only. One would then have 

to think of a kind of absorption that gravity experiences 

in space. Whether this absorption occurs solely through 

the mediating medium itself, e.g. as a result of imperfect 

elasticity or the like, or whether it also occurs through 

masses in between, is better left undiscussed for the time 

being. The latter assumption, although somewhat 

unusual, cannot be rejected outright. According to this 

assumption, the attraction which two masses exert on 

each other would have to be influenced by the 

interposition of a third mass, and indeed reduced. So, for 

example, the attraction of the sun to the moon during a 

total lunar eclipse would have to be smaller than it 

otherwise would be. Whether such an influence, which 

can of course only be very small, can be proven or not, 

cannot be claimed without very detailed investigations.  

The simplest formula that takes absorption into 

account is obtained by applying Newton's law 
κ2mm′

r2
 the 

factor e−λr adds where e is the base of the natural 

logarithmic system. λ becomes not a constant attraction 

A is thus expressed by 
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It is obvious that λ can always be chosen so small 

that within our planetary system Newton's law emerges 

with any approximation. On the other hand, the above-

mentioned difficulties have completely disappeared, 

because the integrals 
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have finite values and the expressions under the integral 

signs become infinitely small for r = ∞, so that the state 

and the motion of matter is no longer mainly determined 

by infinitely distant parts of space. 

With not too small values of λ but gives (2) for the 

planetary movements reason for deviations from the 

Kepler's movement, which can become noticeable. The 

Keplerian motion appears disturbed by a force R acting 

in the radius vector, which can be set for a small λ 
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if for short cut μ = κ2(1 + m) law. If one introduces into 

the known expressions for the variation of the elliptical 

elements (e eccentricity, a large half axis, χ length of the 

perihelion) the true anomaly v instead of time, then one 

has for any disturbing force R 
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The change in the average length may be omitted here. 

One sees now at first sight that with regard to (3) secular 

members of the first order can only be created in χ and 

since the periodic perturbations are quite insignificant for 

such small λ as are considered here, one has only the 

change of the perihelion length according to the formula  
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to be considered. The integration of this equation would 

be very easy to write down. For the purpose of the 

intended rough calculation, it is sufficient to take only the 

first power of e and then find  
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and the secular part of it is 
λ a e

2
ν if n is also called the 

mean motion, then if the eccentricity is neglected ν = nt 
and one has thus for the saecular part Δχ of the change of 

the perihelion length during the time Δt: 
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As is well known, such a forward movement of the 

perihelion of Mercury has been observed. According to 

Leverrier the other elements remain unchanged 

according to Newton's law. So this fact would correspond 

completely to the conclusions of formula (2). Meanwhile, 

the Leverrier's result might not yet be completely without 

contradiction and a note of Mr. Newcomb, published a 

few days ago,2 promises proof that other empirical 

elements in the planetary system are also necessary. 

However, if we retain Leverrier's result for the time being 

Δχ = 40" to be set in the century. From this follows 

λ = 0.00000038. With this, however, now also secular 

movements of the perihelion lengths of the remaining 

planets result, namely for Venus, Earth, Mars, Jupiter, 

Saturn, Neptune respectively 29", 24", 20", 11", 8", 5" in 

the century, while for the moon only 0.9" follows. When 

asking whether such amounts should not have been 

shown in the observations, one should not forget that in 

the heliocentric planetary orbits the perihelion motion 

occurs only multiplied by quantities of the order of 

eccentricity and the mean motion changed by a constant 



quantity is determined directly from the observations. 

From this it follows that an exact observation of the 

motion of Mars in this direction will give the easiest 

information about whether similar amounts as the above 

are permissible or not. But it is likely that Mr. Newcomb's 

detailed and highly detailed investigations of the 

movements of the inner planets, carried out with great 

resources, will soon bring about a decision on this and 

similar questions, so it would be useless to discuss this 

subject in detail. Also, the expected results only touch 

very superficially on the subject of this paper, because for 

the latter it is only an interesting coincidence that the 

formula (2), established without deeper justification, 

formally explains the movement of the perigelion of 

Mercury. If the anomaly in Mercury's motion could not 

be explained by an alteration of the law of attraction, this 

would only mean, in the sense of formula (2), that the size 

λ is much smaller than calculated above on the basis of 

Leverrier's view.  

Recently, Mr.3A. Hall, with the intention of 

explaining the perihelion movement of Mercury, 

proposed another modification of Newton's law. He 

assumes that instead of r2 in the terms of this Act rα+2 is 

to be set and finds  

 

𝑎 = 0.00000016 

 

This assumption also involves secular perihelion 

movements with the other planets, namely with Venus: 

17", Earth 10" and with the moon 139". However, this 

interesting modification of Newton's law is not suitable 

for solving the above-mentioned difficulties. For in place 

of the integrals with respect to r in the three expressions 

(1), the integrals now take the place of the integrals for 

Mr. Hall's formula:  
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And the bland first become, as with Newton's law, 

infinitely large for infinitely large R1. 
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